Название базовой системы (платформы): | Искусственный интеллект (ИИ, Artificial intelligence, AI) |
Разработчики: | Московский технический университет связи и информатики (МТУСИ) |
Дата премьеры системы: | 2023/10/30 |
Технологии: | Речевые технологии |
Основные статьи:
2023: Разработка нейросетевой модели распознавания голосовых команд
Ученые МТУСИ разработали нейросетевую модель распознавания голосовых команд для системы управления роботом-манипулятором. Об этом университет сообщил 30 октября 2023 года.
Взаимодействие человека с роботом-манипулятором все чаще входит в практику работы в пищевой промышленности и медицине. По словам ученых, для такой работы целесообразно по максимуму использовать возможности нейросетевой модели для распознавания и классификации голосовых команд.Михаил Белошапка, «Далее»: Тенденция укрупнения IT-рынка продолжится
Благодаря перебору параметров нейронной сети, учеными МТУСИ определена наиболее результативная архитектура, состоящая из пяти скрытых (8, 16, 32, 64, 128 нейронов) и двух полносвязных слоев (256 и 128 нейронов). Представленная архитектура обеспечивает точность распознавания команд 87.17% на тестовом наборе.
В ходе обучения нейронной сети использована часть набора данных от компании Google, включающая 64 728 аудиофайлов, содержащих записи одной из 30 команд на английском языке, 12 из которых могут быть использованы в системе управления роботом-манипулятором.
![]() | В рамках дальнейшей работы планируется собрать собственный набор данных, состоящий из команд для робота-манипулятора на русском языке, попробовать увеличить точность распознавания команд до 95% и осуществить передачу исполнительной команды непосредственно роботу-манипулятору, — рассказал Данил Подпалый, магистрант МТУСИ. | ![]() |
Разработанная модель распознавания голосовых команд может использоваться при проектировании и разработке системы управления промышленным роботом-манипулятором на базе голосового управления либо при разработке полноценной диалоговой системы для коллаборативной работы человека и робота-манипулятора.
Ученые из МТУСИ выразили уверенность в том, что ещё более широкое внедрение нейросетевой модели распознавания голосовых команд позволит предприятиям выйти на новый уровень выполнения задач, увеличить эффективность работы и перераспределить обязанности между устройствами и людьми.
Подрядчики-лидеры по количеству проектов
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
Распределение систем по количеству проектов, не включая партнерские решения
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)
![](/skins/ta/img/0.gif)