Логотип
Баннер в шапке 1
Баннер в шапке 2

ПНИПУ Нейросети для оценки качества тренировок юных футболистов

Продукт
Название базовой системы (платформы): Искусственный интеллект (ИИ, Artificial intelligence, AI)
Разработчики: ПНИПУ Пермский Национальный Исследовательский Политехнический Университет
Дата премьеры системы: 2025/01/27
Отрасли: Индустрия развлечений, досуг, спорт
Технологии: СППР - Система поддержки принятия решений,  Системы видеоаналитики

Основные статьи:

2025: Представление нейросети для оценки качества тренировок юных футболистов

Ученые Пермского Политеха предложили нейросетевую технологию для оценки качества тренировок юных футболистов. Об этом университет сообщил 27 января 2025 года.

С развитием методов компьютерного зрения появились возможности для анализа и улучшения качества подготовки юных спортсменов. Один из инструментов в этой области – технология трехмерной детекции – определения в пространстве и времени положения ключевых точек человека. Она позволяет не только отслеживать движения, но и проводить глубокий анализ их техники, помогая тренерам и спортсменам выявлять слабые места, совершенствовать навыки и автоматизировать контроль качества выполнения упражнений. Ученые Пермского Политеха разработали прототип информационной системы поддержки тренерских решений, основанной на нейросетевой технологии. Это позволит оценивать тренировочный процесс футболистов с помощью интеллектуального анализа данных, получаемых с видеокамер. Как «Полюс» отказывается от SAP. Опыт российского лидера золотодобычи представлен на TAdviser SummIT 3.2 т

Определять движения спортсмена можно по положению его 2D-скелета и взаимодействию со спортивным инвентарем. Но этого не всегда достаточно, так как для некоторых упражнений необходимо знать нахождение ключевых точек относительно друг друга в пространстве. Более того, после видеосъемки потребуется синхронизировать по времени кадры с левой и правой камеры. При использовании нейронных сетей в 3D-пространстве необходимость в этом отпадает. В целом 3D-подход предлагает лучшую точность и глубину анализа по сравнению с двухмерными методами детектирования, поэтому он положен в основу компьютерной программы.

Ученые Пермского Политеха с помощью обученной нейросети разработали прототип информационной системы поддержки принятия решений, которая сможет определять, насколько качественно идет тренировка юных футболистов. Система позволяет отслеживать индивидуальную работу каждого спортсмена команды одновременно и автоматизировать контроль качества со стороны тренера.

«
Всего программа фиксирует 34 ключевые точки человека, среди которых плечи, локти, кисти, пальцы на руках и ногах, тазобедренные суставы, колени и стопы. Видеокамеры устанавливаются на тренировочном поле, а программно-аппаратная система записывает упражнения в форме видеоряда и передает его на компьютер, где происходит выявление ошибок при выполнении упражнений с мячом и без. Это позволит тренерам и аналитикам проводить детальный анализ техники членов футбольной команды и разрабатывать стратегии совершенствования спортивного мастерства, – сказал Александр Терехин, аспирант кафедры «Вычислительная математика, механика и биомеханика» ПНИПУ.
»

«
Для проверки работы системы мы провели эксперименты на ряде упражнений, требующих анализа трехмерных изображений, например, наклонов. Задача нейросети – определить, насколько качество движений спортсмена соответствует заданным требованиям: не сгибать ноги в коленях, касаться пола пальцами обеих рук не более 3 секунд и т.д. Видеосъемка игрока осуществлялась справа, чтобы не было перекрытия одних частей тела другими, из-за чего нейронная сеть может не понять, как объединить в скелет отдельные ключевые точки. По предварительным результатам разработанная технология полностью справляется с выявлением ошибок в движениях игрока, – пояснил Валерий Столбов, заведующий кафедрой «Вычислительная математика, механика и биомеханика» ПНИПУ, доктор технических наук.
»

В дальнейшем планируется расширить количество анализируемых спортивных упражнений (не менее 40) и провести комплексные испытания в футбольном манеже в процессе реальной тренировки. Разработка ученых Пермского Политеха позволит повысить эффективность занятий и автоматизировать процесс обработки результатов тестирования юных футболистов за счет внедрения компьютерного зрения и методов искусственного интеллекта.



Подрядчики-лидеры по количеству проектов

За всю историю
2022 год
2023 год
2024 год

  VizorLabs (Визорлабс) (44)
  ВидеоМатрикс (Videomatrix) (43)
  Вокорд (Vocord) (39)
  VisionLabs (ВижнЛабс) (27)
  Simetra (ранее А+С Транспроект) (19)
  Другие (377)

  VizorLabs (Визорлабс) (11)
  ВидеоМатрикс (Videomatrix) (8)
  Nord Clan (Норд Клан) (4)
  Джей Эс Эй Групп (JSA Group) (3)
  SteadyControl (2)
  Другие (33)

  VizorLabs (Визорлабс) (13)
  SteadyControl (6)
  Ростелеком (3)
  VisionLabs (ВижнЛабс) (3)
  Транс-Телематика (3)
  Другие (37)

  ВидеоМатрикс (Videomatrix) (10)
  SteadyControl (5)
  Сбер Бизнес Софт (4)
  VizorLabs (Визорлабс) (4)
  Nord Clan (Норд Клан) (3)
  Другие (35)

Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2022 год
2023 год
2024 год

  Вокорд (Vocord) (9, 45)
  ВидеоМатрикс (Videomatrix) (17, 43)
  VizorLabs (Визорлабс) (9, 43)
  VisionLabs (ВижнЛабс) (13, 34)
  PTV Group (2, 25)
  Другие (356, 240)

  VizorLabs (Визорлабс) (7, 11)
  ВидеоМатрикс (Videomatrix) (7, 8)
  SteadyControl (1, 3)
  SteadyControl HoReCa (1, 3)
  VisionLabs (ВижнЛабс) (2, 2)
  Другие (18, 19)

  VizorLabs (Визорлабс) (4, 13)
  SteadyControl HoReCa (1, 7)
  SteadyControl (1, 7)
  Технологии безопасности дорожного движения (ТБДД) (1, 3)
  ВидеоМатрикс (Videomatrix) (2, 2)
  Другие (15, 19)

  ВидеоМатрикс (Videomatrix) (4, 10)
  SteadyControl (1, 5)
  SteadyControl HoReCa (1, 5)
  VizorLabs (Визорлабс) (2, 3)
  Nord Clan (Норд Клан) (1, 3)
  Другие (14, 15)

Распределение систем по количеству проектов, не включая партнерские решения

За всю историю
2022 год
2023 год
2024 год

  Визорлабс Контроль ОТ и ПБ (VizorLabs Health & Safety) - 26
  VisionLabs Luna - 25
  PTV Visum - 25
  SteadyControl Система контроля и управления персоналом - 23
  Vocord Traffic - 16
  Другие 290

  Визорлабс Контроль ОТ и ПБ (VizorLabs Health & Safety) - 6
  SteadyControl Система контроля и управления персоналом - 3
  Vmx SILA: HSE - 2
  Nord Clan: RDetector - 2
  Ecoplatform Фандоматы - 1
  Другие 29

  Визорлабс Контроль ОТ и ПБ (VizorLabs Health & Safety) - 9
  SteadyControl Система контроля и управления персоналом - 7
  ТБДД: Азимут Комплексы фотовидеофиксации - 3
  Vizorlabs Платформенное решение видеоаналитики - 2
  Softlogic: SC-iMVS-RM3 Автокомплекс нейросетевого наблюдения для контроля объектов дорожной инфраструктуры - 2
  Другие 20

  SteadyControl Система контроля и управления персоналом - 5
  Vmx SILA: TP - 5
  Vmx SILA: LSI - 3
  Nord Clan: ML Sense - 3
  Визорлабс Контроль ОТ и ПБ (VizorLabs Health & Safety) - 2
  Другие 16

Подрядчики-лидеры по количеству проектов

За всю историю
2022 год
2023 год
2024 год

  Axelot (Акселот) (4)
  ТехЛАБ (4)
  Eva Lab (Эва Лаб) (3)
  БИТ - Бюро Информационных Технологий (3)
  К-Скай (K-SkAI) (3)
  Другие (20)

  БИТ - Бюро Информационных Технологий (2)
  К-Скай (K-SkAI) (2)
  Axelot (Акселот) (1)
  НБИ (Национальное бюро информатизации) (1)
  ПНИПУ Пермский Национальный Исследовательский Политехнический Университет (1)
  Другие (2)

  Axelot (Акселот) (3)
  Eva Lab (Эва Лаб) (2)
  Data Sapience (Дата Сапиенс) (1)
  GlowByte, ГлоуБайт (ранее Glowbyte Consulting, ГлоуБайт Консалтинг) (1)
  К-Скай (K-SkAI) (1)
  Другие (2)

  СберМедИИ (SberMedAI) (1)
  Философт, Киров (1)
  Другие (0)

Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2022 год
2023 год
2024 год

  ТехЛАБ (3, 4)
  Axelot (Акселот) (1, 4)
  СберМедИИ (SberMedAI) (5, 3)
  БИТ - Бюро Информационных Технологий (2, 3)
  Eva Lab (Эва Лаб) (1, 3)
  Другие (55, 20)

  К-Скай (K-SkAI) (1, 2)
  БИТ - Бюро Информационных Технологий (1, 2)
  Axelot (Акселот) (1, 1)
  НБИ (Национальное бюро информатизации) (1, 1)
  Медиката (Электронный рецепт) (1, 1)
  Другие (1, 1)

  Axelot (Акселот) (1, 3)
  Eva Lab (Эва Лаб) (1, 2)
  СберМедИИ (SberMedAI) (2, 1)
  Правительство Москвы (1, 1)
  Data Sapience (Дата Сапиенс) (1, 1)
  Другие (2, 2)

  Правительство Москвы (1, 1)
  Философт, Киров (1, 1)
  СберМедИИ (SberMedAI) (1, 1)
  Другие (0, 0)

Распределение систем по количеству проектов, не включая партнерские решения

За всю историю
2022 год
2023 год
2024 год

  Galenos Система поддержки принятия врачебных решений (СППВР) - 4
  Axelot WOS X5 (Warehouse Operation System) - 4
  Webiomed - Платформа предиктивной аналитики и управления рисками в здравоохранении на основе машинного обучения - 3
  Eva Lab: Polyptron система поддержки принятия врачебных решений для колоноскопии - 3
  БИТ Управление в пространстве (ЦП УвП) - 3
  Другие 17

  БИТ Управление в пространстве (ЦП УвП) - 2
  Webiomed - Платформа предиктивной аналитики и управления рисками в здравоохранении на основе машинного обучения - 2
  Медиката Скрининг лекарственных назначений - 1
  ПНИПУ: Экспертная система для определения степени аварийности зданий - 1
  НБИ EMAS.Trade Энерготрейдинг - 1
  Другие 1

  Axelot WOS X5 (Warehouse Operation System) - 3
  Eva Lab: Polyptron система поддержки принятия врачебных решений для колоноскопии - 2
  Data Sapience: Talys.SDE Система принятия решений для предстраховых проверок - 1
  Webiomed - Платформа предиктивной аналитики и управления рисками в здравоохранении на основе машинного обучения - 1
  Сбер: Адиа Диагностический ассистент на базе ИИ - 1
  Другие 1

  Философт: Цифровая модель рынка недвижимости (ЦМРН) - 1
  СберМедИИ: ТОП-3 - цифровой помощник врача - 1
  Другие 0