2019/09/13 13:35:52

Специалист по изучению данных (data scientist)

На кадровом рынке растет интерес к специалистам по изучению данных (data scientist). Эта должность требует знаний в области компьютерной техники, бизнеса и аналитики. Подобные специалисты особенно востребованы в сферах энергетики, электронной коммерции, здравоохранения и финансов.

Содержание

Что такое Data Science?

Вообще говоря, Data Science — это набор конкретных дисциплин из разных направлений, отвечающих за анализ данных и поиск оптимальных решений на их основе. Раньше этим занималась только математическая статистика, затем начали использовать машинное обучение и искусственный интеллект, которые в качестве методов анализа данных к матстатистике добавили оптимизацию и computer science (то есть информатику, но в более широком смысле, чем это принято понимать в России)[1].

Основная статья - Наука о данных (Data Science)

А чем занимаются ученые из этой сферы?

Во-первых, программированием, математическими моделями и статистикой. Но не только. Для них очень важно разбираться в том, что происходит в предметной области (например, в финансовых процессах, биоинформатике, банковском деле или даже в компьютерной игре), чтобы отвечать на реальные вопросы: какие риски сопровождают ту или иную компанию, какие наборы генов соответствуют определенному заболеванию, как распознать мошеннические транзакции или какое поведение людей соответствует игрокам, которых надо забанить.

Специалисты по изучению данных (data scientist)

Основные задачи Data Scientist:

  • умение извлекать необходимую информацию из разнообразных источников
  • использовать информационные потоки в режиме реального времени
  • устанавливать скрытые закономерности в массивах данных
  • статистически анализировать их для принятия грамотных бизнес-решений.


Основное отличие специалистов по изучению данных от, например, аналитиков, - это умение видеть логические связи в системе собранной информации, и на основании этого разрабатывать те или иные бизнес-решения. Специалисты по изучению данных собирают информацию, строят модели на ее основании и активно применяют количественный анализ[2].

Именно это редкое сочетание компетенций определяет зарплату специалиста по изучению данных: в США она составляет $110 тыс. - $140 тыс. в год. "Эта вакансия становится все более востребованной,- отмечает на страницах IT World Лора Келли (Laura Kelley), вице-президент агентства по ИТ-консалтингу и подбору персонала Modis (США). - Компании уделяют все больше внимания информации и приложениям. Им требуются специалисты, способные управлять большим количеством данных`.

Майкл Раппа (Michael Rappa), директор Института аналитики в Университете Северной Каролины, вместе со своими коллегами уже 6 лет разрабатывает курс, на котором будут готовить специалистов по изучению данных. "Эти специалисты должны уметь извлекать нужную информацию из всевозможных источников, включая информационные потоки в режиме реального времени, и анализировать ее для дальнейшего принятия бизнес-решений, - говорит он. - Дело не только в объеме обрабатываемой информации, но также в ее разнородности и скорости обновления".

Компании, которые пытаются решить эту задачу силами специалистов по статистике, компьютерных или бизнес-аналитиков, не добиваются нужного результата. Необходимо объединить все эти навыки в одном человеке. Например, бизнес-аналитики воспринимают такие показатели, как разработка и менеджмент продукта, но не способны анализировать и адекватно интерпретировать данные. Математикам и специалистам по статистике недостает знаний в области бизнеса. Именно поэтому, по мнению Раппы, специалистам по изучению данных требуется междисциплинарное образование – они должны уметь решать бизнес-проблемы и составлять информационные модели.

100% выпускников разработанного Институтом аналитики курса для специалистов по изучению данных получили предложения о работе еще до того, как завершили обучение. Раппа также отмечает, что сама специальность - специалист по изучению данных - звучит более привлекательно, чем `специалист по статистике` или `компьютерный аналитик`.

Почему Data Scientist сексуальнее, чем BI-аналитик

В связи с ростом популярности data science (DS) возникает два совершенно очевидных вопроса. Первый – в чем состоит качественное отличие этого недавно сформировавшегося научного направления от существующего несколько десятков лет и активно используемого в индустрии направления business intelligence (BI)? Второй - возможно более важный с практической точки зрения - чем различаются функции специалистов двух родственных специальностей data scientist и BI analyst? В материале, подготовленном специально для TAdviser, на эти вопросы отвечает журналист Леонид Черняк.

2019

Академия больших данных MADE и HeadHunter составили портрет российского Data Scientist

13 сентября 2019 года компания Mail.ru Group сообщила, что Академия больших данных MADE совместно с HeadHunter изучили несколько тысяч вакансий и резюме и составили портрет российского дата-сайентиста: возраст, где живут и работают, навыки, языки, образование и пр.

Портрет российского Data Scientist

Где живут и работают специалисты в Data Science, сколько им лет, какой вуз они закончили, какими языками программирования владеют, сколько у них ученых степеней – Академия больших данных MADE от Mail.ru Group и служба исследований компании HeadHunter (hh.ru) изучили резюме 8 тыс. российских дата-сайентистов и 5,5 тыс. вакансий работодателей и составили портрет специалиста по Data Science.

Насколько востребованы специалисты по Data Science? Начиная с 2015 года потребность в специалистах постоянно растет. В 2018 году количество вакансий под заголовком Data Scientist выросло в 7 раз по сравнению с 2015 годом, а вакансий с ключевыми словами Machine Learning Specialist – в 5 раз. При этом в первом полугодии 2019 года спрос на специалистов по Data Science составил 65% от спроса за весь 2018 год.

Спрос на Data Science специалистов на рынке

Кто работает в Data Science?

В основном в профессии работают мужчины, среди дата-сайентистов их доля – 81%. Больше половины людей, ищущих работу в анализе данных, – специалисты в возрасте 25-34 лет. Женщин в профессии пока немного – 19%. Но интересно, что молодые девушки проявляют все больше интереса к Data Science. Среди женщин, разместивших резюме, почти 40% – девушки в возрасте 18-24 лет.

А вот резюме соискателей старших возрастов довольно мало – только 3% дата-сайентистов старше 45 лет. По экспертным оценкам, это может быть обусловлено несколькими факторами: во-первых, в Data Science мало представителей старшего возраста, а во-вторых, соискатели с большим опытом работы реже размещают свои резюме на крупных поисковых ресурсах и чаще находят работу по рекомендациям.

Кто работает в Data Science?

Где специалисты по Data Science живут и работают?

Больше половины вакансий (60%) и соискателей (64%) находятся в Москве. Также специалисты в области анализа данных востребованы в Санкт-Петербурге, в Новосибирской и Свердловской областях и в республике Татарстан.

Какое образование у специалистов по Data Science?

9 из 10 специалистов, ищущих работу в сфере анализа данных, имеют высшее образование. Среди людей, окончивших вузы, велика доля тех, кто продолжает развиваться в науке и успел получить ученую степень: 8% имеют степень кандидата наук, 1% – доктора наук.

Большинство специалистов, ищущих работу в области Data Science, учились в одном из следующих вузов: в МГТУ им.Н.Э. Баумана, МГУ им. М.В. Ломоносова, МФТИ, НИУ ВШЭ, СПбГУ, СПбПУ, Финансовом университете при Правительстве РФ, НГУ, КФУ. К этим же вузам лояльно относятся и работодатели.

43% специалистов в Data Science отметили, что помимо высшего получили хотя бы одно дополнительное образование. Чаще всего в резюме упоминаются онлайн-курсы по машинному обучению и анализ данных на Coursera.

Какое образование у специалистов по Data Science?

Какие навыки указывают специалисты по Data Science?

Среди ключевых навыков специалисты по Data Science указывают в резюме Python ( 74% ), SQL ( 45%) , Git ( 25% ), Data Analysis ( 24% ) и Data Mining ( 22% ). Те специалисты, которые в резюме пишут о своей экспертизе в машинном обучении, также упоминают владение Linux и C++. Самые популярные языки программирования у специалистов в Data Science: Python, C++, Java, C#, JavaScript.

Какие навыки указывают специалисты по Data Science?

Как работают специалисты по Data Science?

Работодатели хотят, чтобы специалисты по Data Science работали в офисе фултайм. 86% размещенных вакансий предполагают полный день, 9% – гибкий график, и только 5% вакансий содержат предложение об удаленной работе.

«
На российском рынке специалисты в области Data Science очень востребованы: работодатели открывают все больше вакансий, связанных с анализом данных и машинным обучением, запускаются образовательные проекты, активно развивается профессиональное комьюнити. Поэтому мы вместе с коллегами из HeadHunter решили более детально изучить представителей этой профессии и составить детальный портрет российского Data Scientist. Полученные данные и инсайты могут быть полезны и самим специалистам, и работодателям, и создателям образовательных курсов,
сказал Дмитрий Смыслов, вице-президент по персоналу и образовательным проектам Mail.ru Group
»

«
Дата-сайентисты занимают особое положение на рынке труда в сфере ИТ, благодаря неизменно растущему спросу со стороны компаний-работодателей. Именно поэтому они стали объектом нашего совместного с Академией больших данных MADE исследования. В нем мы постарались рассмотреть эту профессию с разных фокусов, в том числе по востребованности, навыкам, образованию, чтобы составить максимально объективный портрет российского дата-сайентиста и привлечь в эту профобласть как можно больше талантливой молодежи. Более того, результаты нашего анализа станут полезным референсом для корпоративных образовательных платформ, таких как Школа программистов hh.ru и Академия больших данных MADE, в подготовке специалистов на основе реальных требований и задач бизнеса,
отметила Мария Игнатова, руководитель Службы исследований компании HeadHunter (hh.ru)
»

При подготовке исследования использовали данные о росте вакансий, требованиях работодателей и опыте соискателей, размещенные на hh.ru в 1 полугодии 2019 года, и предоставленные службой исследований компании HeadHunter.

IBM запустила сертификацию специалистов по данным

29 января 2019 года IBM и консорциум The Open Group запустили сертификацию специалистов по обработке и изучению данных, чтобы формализовать обучение в рамках одной из самых популярных областей для карьерного роста.

Нехватка навыков в области анализа данных часто становилась предметом обсуждения в крупных компаниях. Согласно исследованию LinkedIn, более 151 тыс. рабочих мест специалистов по обработке данных остаются невостребованными к началу 2019 года. Это проблема как для компаний, которые хотят воспользоваться инструментами для анализа данных, так и для ИТ-гигантов, вроде IBM, которые продают подобные инструменты. Хотя автоматизация, машинное обучение и искусственный интеллект могут отчасти сузить эту пропасть, индустрия намерена привлекать как можно больше рабочих рук.

IBM и консорциум The Open Group запустили сертификацию специалистов по обработке данных, чтобы формализовать обучение в рамках одной из самых популярных областей для карьерного роста
IBM и консорциум The Open Group запустили сертификацию специалистов по обработке данных, чтобы формализовать обучение в рамках одной из самых популярных областей для карьерного роста

IBM и The Open Group будут проверять сертификаты специалистов по обработке и анализу данных, оценивая их навыки и квалификацию. IBM объявила, что сертификация будет доступна и для собственных сотрудников компании, так как подобная стратегия способна обеспечить новые пути карьерного роста. Сертификат будет выдаваться после проверки проектных работ и прохождения трех уровнях сертификации.

IBM также представила внутреннюю образовательную программу для подготовки специалистов по обработке и анализу данных. Программа рассчитана на 24 месяца и предназначена для кандидатов, которые не имеют высшего образования в данной области. Обучение будет состоять из лекций, работ, выполняемых под контролем куратора, и практических заданий. Специалисты, закончившие обучение и отвечающие требованиям компании, достигнут спецификации Open Data 1 уровня 1.

Первая группа из пяти студентов, отобранных из нескольких сотен претендентов, уже приступила к обучению в январе 2019 года. IBM намерена активно распространять программу по всей территории США, однако не стала указывать, какая доля студентов сможет получить работу непосредственно в самой компании.[3]

2017: Высшая школа экономики будет обучать Data Culture на всех программах бакалавриата

НИУ ВШЭ первым из российских университетов начнет формировать компетенции по Data Science у всех студентов, обучающихся на программах бакалавриата. В рамках проекта Data Culture расширится набор дисциплин и появятся образовательные треки по анализу больших данных.

Data Culture – это общий термин для обозначения навыков и культуры работы с данными. Высшая школа экономики считает, что запуск проекта, направленного на воспитание у студентов таких навыков, сейчас актуален из-за огромного потенциала использования больших данных и трансформации профессий, которые, так или иначе, используют или могут использовать большие массивы информации. Потребность рынка в специалистах с компетенциями по анализу данных, перерастает в необходимость воспитания во всех предметных областях профессионалов, понимающих возможности и ограничения массивов данных, потенциал и особенности методов машинного обучения, а в ряде направлений и умеющих пользоваться этими технологиями и инструментами.

Проект Data Culture станет продолжением интеграции в образовательные программы НИУ ВШЭ элементов, направленных на воспитание у студентов культуры и умений работы с данными. Он расширит возможности студентов уже абсолютно всех образовательных программ по формированию компетенций, связанных с Data Science. Это позволит выпускникам в перспективе быстро и эффективно интегрироваться в решение профессиональных задач на стыке предметных областей и компьютерных технологий, которые сегодня являются передовыми, но уже в ближайшей перспективе станут привычной практикой.

Проект включает разработку отдельных курсов по Data Science так или иначе кастомизированных под специфику образовательных программ, а также формирование специализированных образовательных треков из таких курсов с разной степенью сложности: начального, базового, продвинутого, профессионального и экспертного уровней. Это связано с большим разнообразием образовательных программ, студенты которых дифференцированы по базовым компетенциям в сфере математики и информатики. Для программ или их блоков будет предложена система курсов Data Culture в определенной вилке «сквозного уровня продвинутости». Более того, эти системы курсов определятся спецификой предметных областей.

Внедрение дисциплин Data Culture будет происходить поэтапно. В 2017/2018 учебном году будут включены в учебные планы обязательные и элективные курсы по направлению Data Science для части образовательных программ, но таковых будет более половины. Например, у студентов-гуманитариев, юристов и дизайнеров появится вводный курс по цифровой грамотности, программы экономистов дополнятся дисциплиной по машинному обучению, политологов – анализу социальных сетей, у статистиков появится курс по программированию и извлечению и анализу интернет-данных. С 2018 года к проекту примкнут все образовательные программы.

«Нагрузка студентов в связи с наращиванием Data составляющей программ не изменится. Все дисциплины включаются не дополнительно, а внутрь основного тела образовательных программ. Дисциплин от этого не становится больше, наша общая модель бакалавриата и магистратуры остается точно такой же по количеству курсов, на бакалавриате точно так же строится система дисциплин общего цикла, где, в том числе, возможно включение курсов, связанных с компьютерными технологиями и анализом данных», – отмечает проректор НИУ ВШЭ Сергей Рощин.

Для реализации проекта Data Culture предполагается привлечение преподавательского состава как из академической среды (преподаватели факультета компьютерных наук, сотрудники департамента математики факультета экономических наук и общеуниверситетской кафедры высшей математики и т.д.), так и из индустрии (участники сообществ по анализу данных, участники тематических мероприятий по анализу данных, проводимых в IT-компаниях). Более того, преподаватели факультетов, которые уже погружены в работу с данными в рамках своей профессиональной деятельности, также будут разрабатывать курсы в рамках проекта Data Culture для студентов своих и смежных факультетов.

Робототехника



Примечания